STORMWATER ASSESSMENT

Lot 10, 3027 Channel Highway Kettering October 2024

GEO-ENVIRONMENTAL

SOLUTIONS

Disclaimer: The author does not warrant the information contained in this document is free from errors or omissions. The author shall not in any way be liable for any loss, damage or injury suffered by the User consequent upon, or incidental to, the existence of errors in the information.

Geo-Environmental Solutions Pty Ltd

www.geosolutions.net.au

Investigation Details

Client:	Bayden Reardon
Site Address:	Lot 10, 3027 Channel Highway, Kettering
Date of Inspection:	16/01/2024
Proposed Works:	Proposed new dwelling
Investigation Method:	Geoprobe 540UD - Direct Push
Inspected by:	M. Campbell

Site Details

Certificate of Title (CT):	60358/10
Title Area:	Approx. 1462 m ²
Applicable Planning Overlays:	None identified
Slope & Aspect:	Approx. 12% N facing slope
Vegetation:	Grass & Weeds

Background Information

Geology Map:	MRT
Geological Unit:	Jurassic dolerite
Climate:	Annual rainfall approx. 900mm
Water Connection:	Tank
Sewer Connection:	Unserviced-On-site required

Investigation

A representative of bore hole was completed to identify the distribution and variation of the soil materials at the site. See soil profile conditions presented below.

Soil Profile Summary

BH 3 Depth (m)	USCS	Description
0.00-0.20	SM	Silty SAND: trace of gravel, grey, brown, slightly moist, loose,
0.20-0.30	CI	Silty CLAY : trace of gravel, medium plasticity, grey, brown, slightly moist, stiff,
0.30-0.40	GW	Sandy GRAVEL: yellow, brown, slightly moist, dense, refusal.

Soil Conditions

Soils on the site are developing from Jurassic dolerite sandstone and consist of shallow silty clays over weathered gravels. The soil has a moderate estimated permeability of between 0.12 - 0.5m/day.

GES have identified the following at the site:

- The site has a gentle slope with an average grade of 12%. The site presents a low risk to slope stability and landslip.
- There are known proposals for a change of grade which may impact on any proposed onsite stormwater absorption.
- The site soils have been identified as comprising of silty topsoils overlying a silty clay layer underlain by weathered gravel materials.
- No soil dispersion was identified.
- No evidence of a water table was observed at the time of the investigation
- There is a low risk of the natural soils being impacted by contamination
- Bedrock was encountered at approximately 0.40m depth.

Soil Dispersion

The soils on site have not been identified as dispersive.

Summary

The soil and site are suitable for in-ground absorption of stormwater from the proposed structure. A hydraulic assessment and design for the absorption system has been completed by Flussig Engineers and can be found attached to this report with a form 35.

It is also recommended that regular inspection and maintenance is conducted to ensure the stormwater system is operating without obstruction. A schematic of recommended checks is also attached.

Please contact me if you have any further questions.

Dr John Paul Cumming B.Agr.Sc (hons) PhD CPSS GAICD Director

GES Stormwater Maintenance Plan Checklist

Indicative frequency	Inspection and criteria	Maintenance activities (where required)
Annual	Check whether any tree branches overhang the roof or are likely to grow to overhang the roof	If safe and where permitted, consider pruning back any overhanging branches
	Check that access covers to storage tanks are closed	Secure any open access covers to prevent risk of entry
	Check that screens on inlets, overflows and other openings do not have holes and are securely fastened	Repair any defective screens to keep out mosquitoes
	Inspect tank water for presence of rats, birds, frogs, lizards or other vermin or insects	Remove any infestations, identify point of entry and close vermin and insect-proof mesh
	Inspect tank water for presence of mosquito larvae (inspect more frequently in sub-tropical and tropical northern Australia, based on local requirements)	Identify point of entry and close with insect- proof mesh with holes no greater than 1.6 mm in diameter
	Inspect gutters for leaf accumulation and ponding	Clean leaves from gutters-remove more regularly if required. If water is ponding, repair gutter to ensure water flows to downpipe
	Check signage at external roof water taps and that any removable handle taps are being properly used	Replace or repair the missing or damaged signage and fittings
	Check plumbing and pump connections are watertight/without leakage	Repair any leaks as necessary
	Check suction strainers, in-line strainers and pump location for debris	Clean suction strainers, in-line strainers or debris from pump location
	Check pump installation is adequate for reliable ongoing operation	Modify and repair as required
	Check first flush diverter, if present	Clean first flush diverter, repair and replace if necessary
	Check health of absorption trench area and surrounding grass or plants	Investigate any adverse impacts observed that might be due to irrigation
	Check condition of roof and coatings	Investigate and resolve any apparent changes to roof condition, such as loss of material coatings

Triennial	Drain, clean out and check the condition of the tank walls and roof to ensure no holes have arisen due to tank deterioration	Repair any tank defects
	Check sediment levels in the tank	Organise a suitable contractor to remove accumulated sediment if levels are approaching those that may block tank outlets
	Undertake a systematic review of operational control of risks to the system	Identify the reason for any problems during inspections and take actions to prevent failures occurring in future
After 20 years and then every 5 years	Monitor the effectiveness of the stormwater absorption area to assess for any clogging due to algal growth, or blocking due to tree roots/grass growth/trench failure.	Clean or replace clogged equipment
Ongoing	Inspect and follow up on any complaints or concerns raised that could indicate problems with the system	Repair or replace any problems that are notified

HYDRAULIC DESIGN REPORT

FE-24001-76 PERFORMANCE SOLUTION REPORT

Document Information

Title	Client	Document Number	Project Manager
Lot 10, 3027 Channel Hwy, Kettering TAS 7155	Geo Environmental Solutions PTY LTD	FE-24001-76	Manuri Alwis BEng (Hons)
Performance Solution Report			Civil Engineer

Document Initial Revision

REVISION 00	Staff Name	Signature	Date
Prepared by	Manuri Alwis <i>Civil Engineer</i>	A	08/11/2024
Reviewed by	Ash Perera Senior Hydraulic Engineer	AF.	15/11/2024
Authorised by	Max W. Möller Principal Hydraulic Engineer	Ageso Milling	15/11/2024

Document Revision History

Rev No.	Description	Reviewed by	Authorised by	Date

© 2024 Flüssig Engineers

This document is and shall remain the property of **Flüssig Engineers**. The document may only be used for the purposes for which it was commissioned and in accordance with the Terms of Engagement for the commission. Unauthorised use of this document in any form is prohibited.

Flüssig Engineers – Level 4, 116 Bathurst Street, Hobart 7000, TASMANIA – Ph 03 6288 7704

INTRODUCTION

This report details the stormwater management strategies for the proposed development located **Lot 10, 3027 Channel Hwy, Kettering TAS 7155**. The objective of the report is to demonstrate how stormwater runoff would be captured and conveyed from the subject site safely to the receiving drainage network while considering stormwater quantity management and the incorporation of stormwater tank and dispersive raingarden pit elements.

EXISTING CONDITIONS AND ASSUMPTIONS

The full site covers an area of approximately 1,424m² with proposed roof, gravel and concrete driveway of 220m², 29m² and 36m² respectively.

Stormwater from the site would be routed through the proposed conventional underground drainage system comprising of Grated Sumps and PVC Pipes, coupled with dispersive raingarden pit elements for on-site detention. The stormwater management report is prepared in accordance with the design criteria listed below:

- The stormwater drainage system is designed using Bureau of Meteorology (BOM) published rainfall Intensity Frequency Duration (IFD) data as a minor / major system to accommodate the 5% AEP / 20 min storm events.
- The flow rate of stormwater leaving the site shall be designed so that it does not exceed the predeveloped flow rate for both the minor and major rain events.
- The total site discharges are modelled as described in *Storm Drainage Design in Small Urban Catchments,* a handbook for Australian practice by *Australian Rainfall and Runoff (ARR2019),* Book 9 – Runoff in Urban Areas.

DETENTION COMPUTATIONS

Detention calculations are provided in Appendix B

SUMMARY AND CONCLUSIONS

- The proposed 10,000 L stormwater tank is sized over a 20-minute stormwater duration with dedicated 3,000L detention for the proposed all proposed impervious roof area and the tank overflow will outflow into proposed dispersive raingarden pit of 14 m² base (7.00 m x 2.00 m) 0.65m deep. The gravel and concrete driveway areas are also detained in the dispersive raingarden pit.
- A DN100 slotted PVC pipe with geotextile covering on top of aggregate is to be installed within the dispersive raingarden pit.
- The performance solution drawing is schematic only and must be read in conjunction with construction plans provided by others.

APPENDIX A STORMWATER CONCEPT DRAWING

DISPERSIVE RAINGARDEN PIT CROSS SECTION **TYPICAL**

SCALE 1:20

STORMWATER TANK WITH DETENTION CROSS SECTION TYPICAL

NTS

Document Set ID: 4540524 Version: 1, Version Date: 20/11/2024

NEW SERVICES

STORMWATER PIPE

STORMWATER FLOW DIRECTION

GRATED STORMWATER PIT. 450X450 CLASS A ACO GALVANISED HEELGUARD OR SIMILAR ENGINEER APPROVED

STORMWATER STORAGE TANK

STORMWATER SERVICES NOTES:

- 1. ALL SITE SAFETY & MANAGEMENT PROCEDURES SHALL BE IN ACCORDANCE WITH THE DEPARTMENT OF STATE GROWTH SPECIFICATIONS: SECTION 168 OCCUPATIONAL HEALTH AND SAFETY
- & SECTION 176 ENVIRONMENTAL MANAGEMENT. 2. ALL PIPES UNDER TRAFFIC ABLE AREAS ARE TO BE BACK FILLED
- FULL DEPTH WITH 20 F.C.R. AND FULLY COMPACTED.
- 3. ALL STORM WATER PIPES TO BE PVC-U-SWJ CLASS "SN8" TO AS 1254 UNO.
- 4. ALL DRAIN AND TRENCH CONSTRUCTION SHALL COMPLY WITH THE LGAT STANDARD DRG TSD G01.
- 5. ANY EXCAVATED TRENCHES IN EXCESS OF 1.5M IN DEPTH ARE TO BE ADEQUATELY SHORED TO PREVENT COLLAPSE DURING WORKS.

PERFORMANCE SOLUTION COMPLIANCE NOTES: AS 3500.3 - CL 7.10

 7.10.1 - OVERFLOW IS SAFE AND DOES NOT COMPROMISE FREEBOARD TO HABITABLE SPACES.

GENERAL

- AS/NZS 3500.3: PART 3 STORMWATER DRAINAGE AUSTRALIAN RAINFALL AND RUN-OFF VOLUME 8: URBAN STORMWATER MANAGEMENT
- AUSTRALIAN RUNOFF QUALITY A GUIDE TO WATER SENSITIVE URBAN DESIGN
- STORM DRAINAGE DESIGN IN SMALL URBAN CATCHMENTS: A HANDBOOK FOR AUSTRALIAN PRACTICE
- WATER SENSITIVE URBAN DESIGN (WSUD) ENGINEERING PROCEDURE: STORMWATER
- WATER SERVICES ASSOCIATION OF AUSTRALIA CODE (WSAA).

SITE AREA=1424 m²

PROPOSED SHED ROOF AREA 220 m²

PROPOSED CONCRETE AREA 36 m²

PROPOSED DRIVEWAY GRAVEL AREA 29 m²

E ENVIRONMENTAL SOLUTIONS PTY LTD	site: LOT 10, 3027 CI TAS 7155	HANNEL H	HWY, KETT	ERING	
	TITLE: PERFORMANCE SOLUTION DESIGN				
	SCALE AT A3: AS SHOWN	DATE: 11.11.2024	DRAWN: MA	CHECKED: MM	
	PROJECT NO: FE-24001- 76	C-100)	REVISION:	

APPENDIX B DETENTION COMPUTATIONS

Lot 10, 3027 Channel Hwy, Kettering TAS 7155 - Roof

STORMWATI	ER DETENTION	V5.05									F	lussig Engineers
Location: Site: PSD: Storage:	Kettering TAS 220m² with tc = AEP of 5%, Abo AEP of 5%, Abo	20 and to ve ground ve ground	s = 15 m PSD = 0 volume	nins.).86L/s 2 = 2.81m ³								
Design Criteria						(Custom	AEP IF	D data used)				
				Location = Method =	E Kettering TAS	(A)RI 200	91,A(E)	P 2019				
	PSD annual e Storage annual e	xceedance xceedance	probab probab	iliy (APE) = iliy (APE) =	= 5 = 5	% %						
			Storage	e method =	= A	(A)bove,(P)ipe,(U)nderground,((C)ustom			
Site Geometry												
	Pre-de Post de	evelopmen evelopment	Site t coeffic : coeffic	area (As) = cient (Cp) = ient (Cw) =	= 220 = 0.30 = 1.00	m² =		0.022 H	a			
	Upstr	Tota eam catchr	al catch ment to	ment (tc) = site (tcs) =	= 20 = 15	minutes minutes						
Coefficient Calo	culations											
	Pre-developme	nt					- 1	Post developme	nt			
	Zone	Area (m²)	C	Area * C	I .		Zone	Area (m ²	2)	C	Area * C
	Concrete	0		0.90	0			Concrete	0		0.90	0
	Gravel	0		0.50	0			Gravel	220		0.50	220
	Garden	220		0.30	66			Garden	0		0.30	0
	Total	220	m²		66			Total	220	m²		220
	Cp = ΣA	.rea*C/Tota	al =	0.300)			Cw = ΣAr	ea*C/Tot	al =	1.000)
Permissible Site	e Discharge (PSD)	(AEP of 59	%)									
			PSD Int	tensity (I) =	= 45.0	mm/hr	I	or catchment to	c = 20 min	s.		
Pe	Pre-develo eak post developm	pment (Qp ient (Qa = 2	= Cp*l' 2*Cw*l'	*As/0.36) = *As/0.36) =	= 0.83 = 5.51	L/s L/s	:	=(0.122 x I)				Eq. 2.24
	Permissib	le site discl	Storage narge (C	e method = Qu = PSD) =	= A = 0.861	(A)bove,(L/s	P)ipe,(U)nderground,((C)ustom			
	l	Above grou	und - Eq	3.8								
			-	0 =	= PSD ² - 2*Qa/to	c*(0.667*t	c*Qp/	Qa + 0.75*tc+0.2	25*tcs)*P	SD + 2*	Qa*Qp	
			Ia	King x as =	PSD and solvir 1 0	ıg	h -	11 /		c -	۵ <i>۲</i>	
				a - PSD =	- 1.0 = -b+v(b²-4ac)/(2a)	D –	-11.4		ι-	5	L
				PSD =	= 0.861	L/s						
	I	Below grou	ınd pipe	e - Eq 3.3 Qp = = PSD =	= PSD*[1.6*tcs/ = 0.83 = 0.855	{tc*(1-2*P L/s	SD/(3*	'Qa))}-0.6*tcs ^{2.67}	//{tc*(1-2	*PSDp/	[3*Qa))} ^{2.6}	7]
		Below grou	und rect	angular ta	nk - Fa 2 4							
	1 +	=tcs/(tc*/1	ייים רפכו בייאס איי	angular ta /(3*02))) -								
	L.	(1) (10	2 130	Qn =	0.034 PSD*[0.005-0.	455*t+5.2	28*t²-:	1.045*t ³ -7.199*t	⁴ +4.519*	t⁵]		
					0.83							
				PSD =	0.829	L/s						

Created at 1:33 PM on Friday, 15 November 2024 by Structural Toolkit®, © Anthony Furr Software (Page 1 of 2)

STORMWATER DETENT

- Roof

1022	IU			GES		Proje	ect No.: 24001-76
Engineer	rs 🔾			Lot 10. 302	27 Channel	Hwv. Kettering	TAS 7155 - F
RMWATER DETENTIC	ON V5.05			,		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Flussig Engi
gn Storage Capacity (AEF	P of 5%)						
Ab	ove ground (Vs) =	[0.5*Qa*td-[((0.875*PSD*td)(1-0.917*PSD/Qa	a)+(0.427*td*P	SD²/Qa)]]*60/10³ m³	Eq 4.23
Below g	round pipe (Vs) =	[(0.5*Qa-0.63	7*PSD+0.089*P	SD ² /Qa)*td]*60)/10³ m³		Eq 4.8
Below ground	d rect. tank (Vs) =	[(0.5*Qa-0.57	2*PSD+0.048*P	SD²/Qa)*td]*60)/10³ m³		Eq 4.13
	td	I	Qa	Above Vs	Pipe Vs	B/G Vs	
	(mins)	(mm/hr)	(L/s)	(m³)	(m³)	(m³)	
	5	87.8	10.7	1.39			
	21	43.8	5.4	2.49			
	29	36.1	4.4	2.64			
	37	31.2	3.8	2.73			
	45	27.8	3.4	2.77			
	53	25.3	3.1	2.80			
	61	23.3	2.8	2.81			
	69	21.7	2.7	2.81			
	77	20.5	2.5	2.81			
	85	19.4	2.4	2.80			
		Table 1 - S	Storage as func	tion of time for	AEP of 5%		
	_	td		Qa	Vs		
	Type	(mins)	(mm/nr)	(L/S)	(m ²)		
	Above	68.2	21.9	2.7	2.81		
	B/ground						
	D/ground	Table 2 - Stora	ge requiremen	ts for AEP of 5%	5		
uency of operation of Ah	ove Ground stor	196	8 -		-		
			0.75	CI 2 4 5 1			
On2	=00n2*0n1 (whe	ere On1=PSD) =	- 0.75	I/s at which tir	ne above group	id storage occurs	
C(P2	I = 360*0n2/(2)	$*Cw*As*10^{3}) =$	= 5.3	mm/h	lie above Broui		Fa 4.24
od of Storage	. 000 Qp_/(2		0.0				-4
Time to Fill:							
At	ove ground (tf) =	td*(1-0.92*PS	D/Oa)				Ea 4.27
Below	ground pipe (tf) =	td*(1-2*PSD/((3*Oa))				Eq 3.2
Below grour	nd rect. tank (tf) =	td*(1-2*PSD/((3*Qa))				Eq 3.2
Time to emp	oty:						
Ab	ove ground (te) =	(Vs+0.33*PSD	^{2*} td/Qa*60/10 ³	³)*(1.14/PSD)*(2	10³/60)		Eq 4.28
Below g	ground pipe (te) =	1.464/PSD*(V	s+0.333*PSD ² *t	d/Qa*60/10³)*	(10³/60)		Eq 4.32
Below groun	d rect. tank (te) =	2.653/PSD*(V	s+0.333*PSD ² *t	d/Qa*60/10 ³)*	(10³/60)		Eq 4.36
Storage peri	od (Ps = tf + te)						Eq 4.26
0 1	. ,						

Period of Storage

Above ground (tf) = td*(1-0.92*PSD/Qa)	Eq 4.27
Below ground pipe (tf) = td*(1-2*PSD/(3*Qa))	Eq 3.2
Below ground rect. tank (tf) = td*(1-2*PSD/(3*Qa))	Eq 3.2
Time to empty:	
Above ground (te) = (Vs+0.33*PSD ² *td/Qa*60/10 ³)*(1.14/PSD)*(10 ³ /60)	Eq 4.28
Below ground pipe (te) = 1.464/PSD*(Vs+0.333*PSD ² *td/Qa*60/10 ³)*(10 ³ /60)	Eq 4.32
Below ground rect. tank (te) = 2.653/PSD*(Vs+0.333*PSD ² *td/Qa*60/10 ³)*(10 ³ /60)	Eq 4.36

	td	Qa	Vs	tf	te	Ps
Туре	(mins)	(L/s)	(L/s)	(mins)	(mins)	(mins)
Above	68.2	2.7	2.8	48.0	70.4	118.4
Pipe						
B/ground						

Table 3 - Period of Storage requirements for AEP of 5%

0	r	i	f	i	с	e
_	_				_	_

Permissible site discharge (Qu=PSD) =	0.86	L/s (Above ground storage)
Orifice coefficient (CD) =	0.61	For sharp circular orifice
Gravitational acceration (g) =	9.81	m/s²
Maximum storage depth above orifice (H) =	666	mm
Orifice flow (Q) =	CD*Ao*√(2*g*	Н)
Therefore:		
Orifice area (Ao) =	390	mm²
Orifice diameter (D = $v(4*Ao/\pi)$) =	22.3	mm

Created at 1:33 PM on Friday, 15 November 2024 by Structural Toolkit®, © Anthony Furr Software (Page 2 of 2)

Document Set ID: 4540524 Version: 1, Version Date: 20/11/2024

Lot 10, 3027 Channel Hwy, Kettering TAS 7155 - Driveway

STORMWATE	ER DETENTION V5.05						Flussig Engineer
Location:	Kettering TAS						
Site:	$65m^2$ with tc = 20 and tcs = 15 mins.						
	AFP of 5% Underground rectangular tank P	SD = 0 241 /s					
Storage:	AEP of 5%. Underground rectangular tank v	olume = 0.62m ³	1				
Storage.	ALF of 5%, onderground rectangular tank v	0.0211					
Design Criteria			(Custom A	EP IFD data used)			
	Location =	Kettering TAS					
	Method =	F	(A)RI 2001	A(F)P 2019			
		_	(, ,) 2002	,,,,(_)0_0			
	PSD annual exceedance probabiliy (APE) =	5	%				
	Storage annual exceedance probabiliy (APE) =	5	%				
	Storage method -)	(C)ustom		
	Storage method –	0	(A)DOVE,(F)ipe,(0)ilderground	,(C)ustoin		
Site Geometry							
Site Geometry			2				
	Site area (As) =	65	m² =	0.0065	На		
	Pre-development coefficient (Cp) =	0.30					
	Post development coefficient (Cw) =	0.72					
	Total catchment (tc) =	20	minutes				
	Upstream catchment to site (tcs) =	15	minutes				
Coefficient Calo	culations						
	Pre-development			Post developm	ent		
	Zone Area (m²) C	Area * C		Zone	Area (m ^a	²) C	Area * C
	Concrete 0 0.90	0		Concrete	36	0.90	32
	Roof 0 1.00	0		Roof	0	1.00	0
	Gravel 0 0.50	0		Gravel	29	0.50	15
	Garden 65 0.30	20		Garden	0	0.30	0
		20		Total	60	m-	47
	Cp = ΣArea*C/Total = 0.300	I		Cw = Σ	Area*C/Tot	al = 0.7	22
Permissible Site	e Discharge (PSD) (AEP of 5%)						
	BSD Intensity (I) -	45.0	mm/hr	For catchmont	tc - 20 min	c	
	$P_{3D} = P_{3D} = P$	45.0	11111/111 1 /c	FOI Catchinent	10 - 20 1111	5.	
Pe	eak post development ($Qa = 2*Cw*I*As/0.36$) =	1.17	L/3 1/s	=(0.026 x l)			Fg. 2.24
		111/	2,0	(01020 // 1)			-9
	Storage method =	U	(A)bove,(F)ipe,(U)nderground	,(C)ustom		
	Permissible site discharge (Qu = PSD) =	0.243	L/s				
	Above ground - Fa 3.8						
	0 =	PSD ² - 2*Qa/to	*(0.667*to	*Qp/Qa + 0.75*tc+0	.25*tcs)*P	6D + 2*Qa*Qp	
	Taking x as =	PSD and solvin	g	47.5	,		
	a =	1.0		b = -2.5		c = 0	0.6
	PSD =	-b±v(b²-4ac)/(2	2a)				
	PSD =	0.252	L/s				
	Below ground nine - Eq. 2.2						
	Qp =	PSD*[1.6*tcs/{	tc*(1-2*PS	D/(3*Qa))}-0.6*tcs ²	^{.67} /{tc*(1-2	*PSDp/(3*Qa))} ²	•67]
		0.24			•		
	PSD =	0.981	L/s				
	Rolous ground sostenessies to	nk Eq.2.4					
	Below ground rectangular ta	нк - Eq 3.4 л ото					
	r = res/(re (1-2 - 50)(5 Qd))) = 0 On =	PSD*[0.005-04	155*t+5.22	8*t ² -1.045*t ³ -7.199	*t ⁴ +4.519*	t₅l	
	=	0.24					
	PSD =	0.243	L/s				

Created at 1:33 PM on Friday, 15 November 2024 by Structural Toolkit®, © Anthony Furr Software (Page 1 of 2)

STORMWATER DETENTION V5.05

Lot 10, 3027 Channel Hwy, Kettering TAS 7155 - Driveway

0.61

0.61

0.62

0.62

0.62

0.61

Eluccia	Enginoarc
FIUSSIE	cligilleers

Eq 4.26

Design Storage Capacity (AEP of 5%)

Above low grou ground re	ground (Vs) = nd pipe (Vs) = ct. tank (Vs) =	[0.5*Qa*td-[(0.3 [(0.5*Qa-0.637* [(0.5*Qa-0.572*	875*PSD*td)(*PSD+0.089*F *PSD+0.048*F	[1-0.917*PSD/Qa 2SD²/Qa)*td]*60 2SD²/Qa)*td]*60	a)+(0.427*td*P I/10 ³ m ³ I/10 ³ m ³	SD²/Qa)]]*60/103 m³
	td	I	Qa	Above Vs	Pipe Vs	B/G Vs
	(mins)	(mm/hr)	(L/s)	(m³)	(m³)	(m³)
	5	87.8	2.3			0.30
	19	46.4	1.2			0.53
	26	38.6	1.0			0.57
	33	33.4	0.9			0.59

Table 1 - Storage as function of time for AEP of 5%

	td	I	Qa	Vs
Туре	(mins)	(mm/hr)	(L/s)	(m³)
Above				
Pipe				
B/ground	60.2	23.5	0.6	0.62

0.8

0.7

0.6

0.6

0.6

0 5

Table 2 - Storage requirements for AEP of 5%

Frequency of operation of Above Ground storage

40

47

54

61

68

75

29.8

27.1

25.0

23.3

21.9

20.8

Qop2 =	0.75 Cl 2.4.5.1	
Qp2 =Qop2*Qp1 (where Qp1=PSD) =	0.19 L/s at which time above ground storage occurs	
I = 360*Qp2/(2*Cw*As*10 ³) =	7.3 mm/h	Eq 4.24

Period of Storage

Time to Fill:	
Above ground (tf) = td*(1-0.92*PSD/Qa)	Eq 4.27
Below ground pipe (tf) = td*(1-2*PSD/(3*Qa))	Eq 3.2
Below ground rect. tank (tf) = td*(1-2*PSD/(3*Qa))	Eq 3.2
Time to empty:	
Above ground (te) = (Vs+0.33*PSD ² *td/Qa*60/10 ³)*(1.14/PSD)*(10 ³ /60)	Eq 4.28
Below ground pipe (te) = 1.464/PSD*(Vs+0.333*PSD ² *td/Qa*60/10 ³)*(10 ³ /60)	Eq 4.32
Below ground rect. tank (te) = 2.653/PSD*(Vs+0.333*PSD ² *td/Qa*60/10 ³)*(10 ³ /60)	Eq 4.36

Storage period (Ps = tf + te)

	td	Qa	Vs	tf	te	Ps
Туре	(mins)	(L/s)	(L/s)	(mins)	(mins)	(mins)
Above						
Pipe						
B/ground	60.2	0.6	0.6	44.3	133.8	178.1
Table 3 - Period of Storage requirements for AEP of 5%						

•

Permissible site discharge (Qu=PSD) =	0.24	L/s (Underground storage)
Orifice coefficient (CD) =	1	For sharp circular orifice
Gravitational acceration (g) =	9.81	m/s²
Maximum storage depth above orifice (H) =	650	mm
Orifice flow (Q) =	CD*Ao*√(2*g*	H)
Therefore:		
Orifice area (Ao) =	68	mm²
Orifice diameter (D = $\sqrt{4*Ao/\pi}$) =	9.3	mm

Created at 1:33 PM on Friday, 15 November 2024 by Structural Toolkit®, © Anthony Furr Software (Page 2 of 2)

Document Set ID: 4540524 Version: 1, Version Date: 20/11/2024

Orifice

Dispersive raingarden pit

Hydrology		
A1 = impervious area collected	220	sqm
C1 = coefficient (Roof)	1.0	
A2=Impervious area (Concrete & gravel)	65	sqm
C2= Coefficient	0.72	
AEP = Annual Exceedance Probability	5	%
Ground Conditions	-	T
Hydraulic conductivity K (absorption rate)	0.2153	mm/min
Adjusted rate (15% clogging factor)	0.1830	mm/min
Pit Design		1
Length, L	7	m
Width, B	2	m
Depth, h	0.65	m
Base area, BA	14	sqm
Void space	35%	
Pit Storage	3.185	cum
	3185.00	L
Detention tank data		
Tank storage	3.00	cum

Tank storage	3.00	cum	Criteria	Required	Design	Check
			Total			
			Detention			
Tank Underflow	1.10	L/s	Required	3,900	6185	ОК
			Trench			
			capacity			
			underflow			
			for 5% AEP			
			20-minute			
Tank Underflow	66.00	L/m	storm	1971	3185	ОК
Total available detention storage (tank						
+ Pit)	6.185	cum				
	6185	L				

Checking storms

	Duration (min)	Intensity (mm/hr)	Vol in System(L)	Vol in Pit (L)	Vol out Pit (L)	Storage total System (L)	Storage Pit (L)	Hours to empty Pit
5Mins	5	87.8	1952	672	13	1939	660	4
6Mins	6	83.36	2224	786	15	2209	771	5
10Mins	10	65.6	2917	1172	26	2891	1146	8
20Mins	20	45	4002	2022	51	3951	1971	13
30Mins	30	35.4	4722	1722	77	4646	1646	11
1Hr	60	23.5	6270	3270	154	6116	3116	21
2Hrs	120	16.2	8644	5644	307	8337	5337	37
3Hrs	180	13.4	10725	7725	461	10264	7264	50
6Hrs	360	9.91	15864	12864	922	14942	11942	84
12Hrs	720	7.31	23404	20404	1845	21559	18559	133
24Hrs	1440	5.06	32400	29400	3689	28711	25711	191
48Hrs	2880	3.1	39700	36700	7378	32322	29322	239
72Hrs	4320	2.19	42069	39069	11067	31002	28002	254

IFD Design Rainfall Intensity

Location

Label: Lot 10, 3027 Channel Hwy, Kettering TAS 7155

Latitude: -43.1298 [Nearest grid cell: 43.1375 (S)]

Longitude:147.2488 [Nearest grid cell: 147.2375 (E)]

IFD Design Rainfall Intensity (mm/h)

Issued: 11 November 2024

Rainfall intensity for Durations, Exceedance per Year (EY), and Annual Exceedance Probabilities (AEP). FAQ for New ARR probability terminology

Table Chart

Unit: mm/h 🗸

	Annual Exceedance Probability (AEP)							
Duration	63.2%	50%#	20%*	10%	5%	2%	1%	
1 <u>min</u>	62.5	71.0	99.5	121	143	175	201	
2 <u>min</u>	53.7	60.7	82.8	98.0	113	133	148	
3 <u>min</u>	47.6	53.8	74.0	88.1	102	121	136	
4 <u>min</u>	42.9	48.6	67.3	80.7	94.3	113	128	
5 <u>min</u>	39.2	44.4	61.9	74.6	87.8	106	121	
10 <u>min</u>	28.2	32.1	45.2	55.1	65.6	80.9	93.8	
15 <u>min</u>	22.8	25.9	36.5	44.5	53.1	65.6	76.1	
20 <u>min</u>	19.5	22.1	31.1	37.9	45.0	55.5	64.3	
25 <u>min</u>	17.2	19.5	27.4	33.3	39.5	48.5	55.9	
30 <u>min</u>	15.6	17.7	24.7	29.9	35.4	43.3	49.8	
45 <u>min</u>	12.5	14.2	19.7	23.7	27.8	33.6	38.3	
1 hour	10.7	12.1	16.8	20.1	23.5	28.2	31.9	
1.5 hour	8.68	9.86	13.6	16.2	18.8	22.3	25.0	
2 hour	7.51	8.55	11.8	14.0	16.2	19.1	21.4	
3 hour	6.16	7.05	9.78	11.6	13.4	15.7	17.5	
4.5 hour	5.07	5.83	8.16	9.71	11.2	13.1	14.6	
6 hour	4.41	5.09	7.18	8.57	9.91	11.7	13.0	
9 hour	3.59	4.17	5.97	7.17	8.33	9.89	11.1	
12 hour	3.09	3.59	5.18	6.26	7.31	8.74	9.83	
18 hour	2.45	2.86	4.17	5.07	5.96	7.19	8.15	
24 hour	2.05	2.39	3.50	4.28	5.06	6.13	6.98	
30 hour	1.77	2.06	3.02	3.70	4.38	5.33	6.09	
36 hour	1.56	1.82	2.65	3.25	3.86	4.70	5.38	
48 hour	1.26	1.47	2.13	2.61	3.10	3.78	4.33	
72 hour	0.921	1.06	1.52	1.85	2.19	2.66	3.04	
96 hour	0.729	0.835	1.18	1.43	1.68	2.02	2.30	
120 hour	0.608	0.693	0.968	1.16	1.36	1.63	1.84	
144 hour	0.525	0.596	0.825	0.984	1.14	1.36	1.54	
168 hour	0.465	0.528	0.725	0.860	0.992	1.18	1.33	

Note:

The 50% AEP IFD does not correspond to the 2 year Average Recurrence Interval (ARI) IFD. Rather it corresponds to the 1.44 ARI.

* The 20% AEP IFD **does not** correspond to the 5 year Average Recurrence Interval (ARI) IFD. Rather it corresponds to the 4.48 ARI.

CERTIFICATE OF THE RESPONSIBLE DESIGNER

Section 94 Section 106 Section 129 Section 155

To:	Bayden Reardon		Owner name	35	
				Address	Form
		1]] Suburb/postcoa	le
]		, 	
Designer detail	s:				
Name:	Max W. Moller			Category:	Civil
Business name:	Flussig Engineers			Phone No:	0431 080 279
Business address:	L4 116 Bathurst St]	
	HOBART]	7000	Fax No:	N/A
Licence No:	650370893 Email address:	m	ax@flussig	.com.au	
Details of the n	roposed work:				
Details of the p					
Owner/Applicant	Bayden Reardon	Bayden Reardon			^{ect} FE_24001-76
Address:	Lot 10, 3027 Channel Highway,			Lot No	D:
	Kettering				
Type of work:	Building work		F	Plumbing work	X X (X all applicable)
Description of wo	rk:				
On-Site stormwater	system - design			(r au	new building / alteration / ddition / repair / removal / perection
				N	vater / sewerage /
				01	n-site wastewater
				m bi	anagement system / ackflow prevention / other)
Description of the	Design Work (Scope, limitations of	or e	xclusions)	: (X all applicable	e certificates)
Certificate Type:	Certificate		Res	sponsible Pra	ctitioner
	☐ Building design		Arc	chitect or Building Designer	
	☐ Structural design		Enç	ngineer or Civil Designer	
	☐ Fire Safety design Fire		re Engineer		
	⊠ Civil design		Civ	Civil Engineer or Civil Designer	
	Hydraulic design		Bui	Iding Services	Designer
	☐ Fire service design		Bui	Iding Services	Designer
	Electrical design		Bui	Iding Services	Designer
	☐ Mechanical design		Bui	Iding Service I	Designer
	□ Plumbing design	_	Plu De	mber-Certifier signer or Engi	; Architect, Building neer

	□ Other (specify)		
Deemed-to-Satisfy:		Performance Solution:	(X the appropriate box)

Onsite stormwater retention

Design documents provided:

The following documents are provided with this Certificate -

Document description:		
Drawing numbers: FE-24001-76_REV00-C100 FE-24001-76_REV00-C101	Prepared by: Flussig Engineers	Date: 15.11.24
Schedules:	Prepared by:	Date:
Specifications: Performance Solution Report	Prepared by: Flussig Engineers	Date: 15.11.24
Computations: Performance solution Report	Prepared by: Flussig Engineers	Date:15.11.24
Performance solution proposals: Onsite stormwater retention	Prepared by: Flussig Engineers	Date:15.11.24
Test reports:	Prepared by:	Date:

Standards, codes or guidelines relied on in design	
process:	
AS1547-2012 On-site domestic wastewater management.	
AS3500 (Parts 0-5)-2013 Plumbing and drainage set.	

Any other relevant documentation:

GES stormwater assessment 'Site assessment - Lot 10, 3027 Channel Highway, Kettering'

Attribution as designer:

I Max W. Moller, am responsible for the design of that part of the work as described in this certificate;

The documentation relating to the design includes sufficient information for the assessment of the work in accordance with the *Building Act 2016* and sufficient detail for the builder or plumber to carry out the work in accordance with the documents and the Act;

This certificate confirms compliance and is evidence of suitability of this design with the requirements of the National Construction Code.

Max W. Moller

Apro Miller

15.11.24

Licence No: 650370893

NO: 0000700000

|--|

Note: not co	single residential dwellings and outbuildings on a lot with an existing sewer connection are onsidered to increase demand and are not certifiable.
lf you	cannot check ALL of these boxes, LEAVE THIS SECTION BLANK.
TasW	ater must then be contacted to determine if the proposed works are Certifiable Works.
l conf TasW	irm that the proposed works are not Certifiable Works, in accordance with the Guidelines for ater CCW Assessments, by virtue that all of the following are satisfied:
X	The works will not increase the demand for water supplied by TasWate
X	The works will not increase or decrease the amount of sewage or toxins that is to be removed by, or discharged into, TasWater's sewerage infrastructure
X	The works will not require a new connection, or a modification to an existing connection, to be made to TasWater's infrastructure
X	The works will not damage or interfere with TasWater's works
X	The works will not adversely affect TasWater's operations
X	The work are not within 2m of TasWater's infrastructure and are outside any TasWater easement
X	I have checked the LISTMap to confirm the location of TasWater infrastructure
X	If the property is connected to TasWater's water system, a water meter is in place, or has been applied for to TasWater.

Certification:

I Max W. Moller....... being responsible for the proposed work, am satisfied that the wor ks described above are not Certifiable Works, as defined within the *Water and Sewerage Industry Act 2008,* that I have answered the above questions with all due diligence and have read and understood the Guidelines for TasWater CCW Assessments.

Note: the Guidelines for TasWater Certification of Certifiable Works Assessments are available at: www.taswater.com.au

Designer:

Name: (print)

Max W. Moller

Signed	
Apro Miller	

Date

15.11.24